Copied to
clipboard

G = C4217D14order 448 = 26·7

17th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4217D14, C14.212+ 1+4, C4⋊C450D14, (C4×D4)⋊22D7, (D4×C28)⋊24C2, C22⋊D287C2, C287D411C2, (C4×C28)⋊28C22, C22⋊C449D14, (C22×C4)⋊14D14, D14⋊D410C2, C23⋊D1421C2, D14⋊C431C22, D14.5D48C2, (C2×D4).221D14, C4.D2828C2, C422D710C2, C4⋊Dic710C22, Dic7⋊D427C2, (C2×C14).104C24, (C2×C28).162C23, Dic7⋊C433C22, (C22×C28)⋊11C22, Dic7.D49C2, C22⋊Dic149C2, C72(C22.32C24), (C2×Dic14)⋊7C22, (C4×Dic7)⋊53C22, (C2×D28).27C22, C22.6(C4○D28), C2.22(D46D14), C23.D710C22, C2.17(D48D14), (D4×C14).308C22, C23.23D142C2, (C2×Dic7).45C23, (C23×D7).42C22, (C22×D7).38C23, C23.101(C22×D7), C22.129(C23×D7), (C22×C14).174C23, (C22×Dic7).99C22, C4⋊C4⋊D78C2, (C4×C7⋊D4)⋊46C2, (C2×C4×D7)⋊49C22, (C2×D14⋊C4)⋊35C2, (C7×C4⋊C4)⋊62C22, C2.53(C2×C4○D28), C14.46(C2×C4○D4), (C2×C7⋊D4)⋊5C22, (C2×C14).17(C4○D4), (C7×C22⋊C4)⋊58C22, (C2×C4).162(C22×D7), SmallGroup(448,1013)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4217D14
C1C7C14C2×C14C22×D7C23×D7C2×D14⋊C4 — C4217D14
C7C2×C14 — C4217D14
C1C22C4×D4

Generators and relations for C4217D14
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, bc=cb, dbd=a2b, dcd=c-1 >

Subgroups: 1364 in 250 conjugacy classes, 95 normal (91 characteristic)
C1, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, Q8, C23, C23, D7, C14, C14, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, Dic7, C28, D14, C2×C14, C2×C14, C2×C14, C2×C22⋊C4, C4×D4, C4×D4, C22≀C2, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C422C2, Dic14, C4×D7, D28, C2×Dic7, C2×Dic7, C7⋊D4, C2×C28, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, C22.32C24, C4×Dic7, Dic7⋊C4, C4⋊Dic7, D14⋊C4, C23.D7, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28, C22×Dic7, C2×C7⋊D4, C22×C28, D4×C14, C23×D7, C4.D28, C422D7, C22⋊Dic14, C22⋊D28, D14⋊D4, Dic7.D4, D14.5D4, C4⋊C4⋊D7, C2×D14⋊C4, C4×C7⋊D4, C23.23D14, C287D4, C23⋊D14, Dic7⋊D4, D4×C28, C4217D14
Quotients: C1, C2, C22, C23, D7, C4○D4, C24, D14, C2×C4○D4, 2+ 1+4, C22×D7, C22.32C24, C4○D28, C23×D7, C2×C4○D28, D46D14, D48D14, C4217D14

Smallest permutation representation of C4217D14
On 112 points
Generators in S112
(1 88 58 43)(2 44 59 89)(3 90 60 45)(4 46 61 91)(5 92 62 47)(6 48 63 93)(7 94 64 49)(8 50 65 95)(9 96 66 51)(10 52 67 97)(11 98 68 53)(12 54 69 85)(13 86 70 55)(14 56 57 87)(15 99 40 84)(16 71 41 100)(17 101 42 72)(18 73 29 102)(19 103 30 74)(20 75 31 104)(21 105 32 76)(22 77 33 106)(23 107 34 78)(24 79 35 108)(25 109 36 80)(26 81 37 110)(27 111 38 82)(28 83 39 112)
(1 24 8 17)(2 25 9 18)(3 26 10 19)(4 27 11 20)(5 28 12 21)(6 15 13 22)(7 16 14 23)(29 59 36 66)(30 60 37 67)(31 61 38 68)(32 62 39 69)(33 63 40 70)(34 64 41 57)(35 65 42 58)(43 108 95 72)(44 109 96 73)(45 110 97 74)(46 111 98 75)(47 112 85 76)(48 99 86 77)(49 100 87 78)(50 101 88 79)(51 102 89 80)(52 103 90 81)(53 104 91 82)(54 105 92 83)(55 106 93 84)(56 107 94 71)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 29)(16 42)(17 41)(18 40)(19 39)(20 38)(21 37)(22 36)(23 35)(24 34)(25 33)(26 32)(27 31)(28 30)(43 94)(44 93)(45 92)(46 91)(47 90)(48 89)(49 88)(50 87)(51 86)(52 85)(53 98)(54 97)(55 96)(56 95)(57 58)(59 70)(60 69)(61 68)(62 67)(63 66)(64 65)(71 79)(72 78)(73 77)(74 76)(80 84)(81 83)(99 109)(100 108)(101 107)(102 106)(103 105)(110 112)

G:=sub<Sym(112)| (1,88,58,43)(2,44,59,89)(3,90,60,45)(4,46,61,91)(5,92,62,47)(6,48,63,93)(7,94,64,49)(8,50,65,95)(9,96,66,51)(10,52,67,97)(11,98,68,53)(12,54,69,85)(13,86,70,55)(14,56,57,87)(15,99,40,84)(16,71,41,100)(17,101,42,72)(18,73,29,102)(19,103,30,74)(20,75,31,104)(21,105,32,76)(22,77,33,106)(23,107,34,78)(24,79,35,108)(25,109,36,80)(26,81,37,110)(27,111,38,82)(28,83,39,112), (1,24,8,17)(2,25,9,18)(3,26,10,19)(4,27,11,20)(5,28,12,21)(6,15,13,22)(7,16,14,23)(29,59,36,66)(30,60,37,67)(31,61,38,68)(32,62,39,69)(33,63,40,70)(34,64,41,57)(35,65,42,58)(43,108,95,72)(44,109,96,73)(45,110,97,74)(46,111,98,75)(47,112,85,76)(48,99,86,77)(49,100,87,78)(50,101,88,79)(51,102,89,80)(52,103,90,81)(53,104,91,82)(54,105,92,83)(55,106,93,84)(56,107,94,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,29)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,98)(54,97)(55,96)(56,95)(57,58)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65)(71,79)(72,78)(73,77)(74,76)(80,84)(81,83)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112)>;

G:=Group( (1,88,58,43)(2,44,59,89)(3,90,60,45)(4,46,61,91)(5,92,62,47)(6,48,63,93)(7,94,64,49)(8,50,65,95)(9,96,66,51)(10,52,67,97)(11,98,68,53)(12,54,69,85)(13,86,70,55)(14,56,57,87)(15,99,40,84)(16,71,41,100)(17,101,42,72)(18,73,29,102)(19,103,30,74)(20,75,31,104)(21,105,32,76)(22,77,33,106)(23,107,34,78)(24,79,35,108)(25,109,36,80)(26,81,37,110)(27,111,38,82)(28,83,39,112), (1,24,8,17)(2,25,9,18)(3,26,10,19)(4,27,11,20)(5,28,12,21)(6,15,13,22)(7,16,14,23)(29,59,36,66)(30,60,37,67)(31,61,38,68)(32,62,39,69)(33,63,40,70)(34,64,41,57)(35,65,42,58)(43,108,95,72)(44,109,96,73)(45,110,97,74)(46,111,98,75)(47,112,85,76)(48,99,86,77)(49,100,87,78)(50,101,88,79)(51,102,89,80)(52,103,90,81)(53,104,91,82)(54,105,92,83)(55,106,93,84)(56,107,94,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,29)(16,42)(17,41)(18,40)(19,39)(20,38)(21,37)(22,36)(23,35)(24,34)(25,33)(26,32)(27,31)(28,30)(43,94)(44,93)(45,92)(46,91)(47,90)(48,89)(49,88)(50,87)(51,86)(52,85)(53,98)(54,97)(55,96)(56,95)(57,58)(59,70)(60,69)(61,68)(62,67)(63,66)(64,65)(71,79)(72,78)(73,77)(74,76)(80,84)(81,83)(99,109)(100,108)(101,107)(102,106)(103,105)(110,112) );

G=PermutationGroup([[(1,88,58,43),(2,44,59,89),(3,90,60,45),(4,46,61,91),(5,92,62,47),(6,48,63,93),(7,94,64,49),(8,50,65,95),(9,96,66,51),(10,52,67,97),(11,98,68,53),(12,54,69,85),(13,86,70,55),(14,56,57,87),(15,99,40,84),(16,71,41,100),(17,101,42,72),(18,73,29,102),(19,103,30,74),(20,75,31,104),(21,105,32,76),(22,77,33,106),(23,107,34,78),(24,79,35,108),(25,109,36,80),(26,81,37,110),(27,111,38,82),(28,83,39,112)], [(1,24,8,17),(2,25,9,18),(3,26,10,19),(4,27,11,20),(5,28,12,21),(6,15,13,22),(7,16,14,23),(29,59,36,66),(30,60,37,67),(31,61,38,68),(32,62,39,69),(33,63,40,70),(34,64,41,57),(35,65,42,58),(43,108,95,72),(44,109,96,73),(45,110,97,74),(46,111,98,75),(47,112,85,76),(48,99,86,77),(49,100,87,78),(50,101,88,79),(51,102,89,80),(52,103,90,81),(53,104,91,82),(54,105,92,83),(55,106,93,84),(56,107,94,71)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,29),(16,42),(17,41),(18,40),(19,39),(20,38),(21,37),(22,36),(23,35),(24,34),(25,33),(26,32),(27,31),(28,30),(43,94),(44,93),(45,92),(46,91),(47,90),(48,89),(49,88),(50,87),(51,86),(52,85),(53,98),(54,97),(55,96),(56,95),(57,58),(59,70),(60,69),(61,68),(62,67),(63,66),(64,65),(71,79),(72,78),(73,77),(74,76),(80,84),(81,83),(99,109),(100,108),(101,107),(102,106),(103,105),(110,112)]])

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H···4L7A7B7C14A···14I14J···14U28A···28L28M···28AJ
order122222222244444444···477714···1414···1428···2828···28
size1111224282828222244428···282222···24···42···24···4

82 irreducible representations

dim111111111111111122222222444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D14D14D14C4○D282+ 1+4D46D14D48D14
kernelC4217D14C4.D28C422D7C22⋊Dic14C22⋊D28D14⋊D4Dic7.D4D14.5D4C4⋊C4⋊D7C2×D14⋊C4C4×C7⋊D4C23.23D14C287D4C23⋊D14Dic7⋊D4D4×C28C4×D4C2×C14C42C22⋊C4C4⋊C4C22×C4C2×D4C22C14C2C2
# reps1111111111111111343636324266

Matrix representation of C4217D14 in GL6(𝔽29)

11240000
24180000
0091604
0024202511
0024152413
00140165
,
1700000
0170000
0019600
00171000
0020086
002692321
,
100000
010000
00201900
0020600
0013261010
006121922
,
28130000
010000
00222200
0011700
007171919
00119710

G:=sub<GL(6,GF(29))| [11,24,0,0,0,0,24,18,0,0,0,0,0,0,9,24,24,14,0,0,16,20,15,0,0,0,0,25,24,16,0,0,4,11,13,5],[17,0,0,0,0,0,0,17,0,0,0,0,0,0,19,17,20,26,0,0,6,10,0,9,0,0,0,0,8,23,0,0,0,0,6,21],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,20,20,13,6,0,0,19,6,26,12,0,0,0,0,10,19,0,0,0,0,10,22],[28,0,0,0,0,0,13,1,0,0,0,0,0,0,22,11,7,1,0,0,22,7,17,19,0,0,0,0,19,7,0,0,0,0,19,10] >;

C4217D14 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{17}D_{14}
% in TeX

G:=Group("C4^2:17D14");
// GroupNames label

G:=SmallGroup(448,1013);
// by ID

G=gap.SmallGroup(448,1013);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,100,675,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽